Fundamentals of Biomass Pretreatment by Fractionation

نویسندگان

  • Poulomi Sannigrahi
  • Arthur J. Ragauskas
چکیده

With the rise in global energy demand and environmental concerns about the use of fossil fuels, the need for rapid development of alternative fuels from sustainable, non-food sources is now well acknowledged. The effective utilization of low-cost high-volume agricultural and forest biomass for the production of transportation fuels and bio-based materials will play a vital role in addressing this concern [1]. The processing of lignocellulosic biomass, especially from mixed agricultural and forest sources with varying composition, is currently significantly more challenging than the bioconversion of corn starch or cane sugar to ethanol [1,2]. This is due to the inherent recalcitrance of lignocellulosic biomass to enzymatic and microbial deconstruction, imparted by the partly crystalline nature of cellulose and its close association with hemicellulose and lignin in the plant cell wall [2,3]. Pretreatments that convert raw lignocellulosic biomass to a form amenable to enzymatic degradation are therefore an integral step in the production of bioethanol from this material [4]. Chemical or thermochemical pretreatments act to reduce biomass recalcitrance in various ways. These include hemicellulose removal or degradation, lignin modification and/or delignification, reduction in crystallinity and degree of polymerization of cellulose, and increasing pore volume. Biomass pretreatments are an active focus of industrial and academic research efforts, and various strategies have been developed. Among commonly studied pretreatments, organosolv pretreatment, in which an aqueous organic solvent mixture is used as the pretreatment medium, results in the fractionation of the major biomass components, cellulose, lignin, and hemicellulose into three process streams [5,6]. Cellulose and lignin are recovered as separate solid streams, while hemicelluloses and sugar degradation products such as furfural and hydroxymethylfurfural (HMF) are released as a water-soluble fraction. The combination of ethanol as the solvent and

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation

BACKGROUND The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucal...

متن کامل

Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.

Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided int...

متن کامل

Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation

BACKGROUND Pretreatments are a prerequisite for enzymatic hydrolysis of biomass and production of ethanol. They are considered to open up the plant cell wall structure by altering, moving or solubilizing lignin and hydrolyzing a proportion of hemicellulosic moieties. However, there is little information concerning pretreatment-induced changes on wheat bran cell wall polymers and indeed on chang...

متن کامل

Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment

Decreasing lignin content of plant biomass by genetic engineering is believed to mitigate biomass recalcitrance and improve saccharification efficiency of plant biomass. In this study, we compared two different pretreatment methods (i.e., dilute acid and cellulose solvent) on transgenic plant biomass samples having different lignin contents and investigated biomass saccharification efficiency. ...

متن کامل

Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedsto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013